If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+19k+28=0
a = 3; b = 19; c = +28;
Δ = b2-4ac
Δ = 192-4·3·28
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-5}{2*3}=\frac{-24}{6} =-4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+5}{2*3}=\frac{-14}{6} =-2+1/3 $
| -6x+8x-8=2(x-5)-3 | | X+18y=162 | | (5n+1)=5 | | 6(x+2)=x+3 | | -6p-6(6-2p)=2(p-5)-6 | | x+1,15x=2 | | -5v/8=-10 | | 5x=15=65 | | -2+19w=11w+23 | | 2y+18=5(y+6) | | 6x-5-4x+9=20 | | 9(9-a)+15=33 | | 5(x+6)-2x=3(x+10 | | 4(3x-1)=9x-12 | | -9(w-6)=5w-16 | | 6=y/4-1 | | 20x(X-40)=Y | | 10(a-1)=-6a+7+16a | | 20x(X)-40=Y | | 9y+6=5(y+2) | | (20x)X-40=Y | | 54+3x=8x+9 | | -3y-3=4-2y | | 84=7(4-x) | | 5a+3a+4=36 | | 7(5x+9)+(x-9)=18 | | 6z-8=z+17 | | 50=9y-4 | | 2t+8=-32 | | 3x-18=5x+8 | | 2/5+8=(3/7)x | | 2/5+8=3/7x |